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Abstract

Dormant season grapevine pruning requires skilled seasonal workers during the winter season
which are becoming less available. As workers hasten to prune more vines in less time amid
to the short-term seasonal hiring culture and low wages, vines are often pruned inconsis-
tently leading to imbalanced grapevines. In addition to this, currently existing mechanical
methods cannot selectively prune grapevines and manual follow-up operations are often
required that further increase production cost. In this paper, we present the design and
field evaluation of a rugged, and fully autonomous robot for end-to-end pruning of dormant
season grapevines. The proposed design incorporates novel camera systems, a kinematically
redundant manipulator, a ground robot, and novel algorithms in the perception system.
The presented research prototype robot system was able to spur prune a row of vines from
both sides completely in 213 sec/vine with a total pruning accuracy of 87%. Initial field
tests of the autonomous system in a commercial vineyard have shown significant variability
reduction in dormant season pruning when compared to mechanical pre-pruning trials. The
design approach, system components, lessons learned, future enhancements as well as a brief
economic analysis are described in the manuscript.

Keywords: Robotic pruning, agricultural robotics, vineyard automation, autonomous nav-
igation, unstructured environment.

1 Introduction

Pruning is a primary tool used by grape growers to manipulate vine size and shape which helps to regulate
crop-load and maintain vine balance. Dormant season grapevine pruning involves removal of plant tissues
in the form of spurs and excess one-year-old canes from the previous year’s growth. It is a highly labor-
intensive task that requires skilled workers during winter season, which are becoming less available. As labor
workers are paid per vine to prune, the short-term seasonal hiring culture often leads to workers rushing to
prune more vines in less time. This leads to inconsistent pruning of vines that often results in over/under
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cropping and could take several years of careful mitigation to recover and remain profitable (Bates and
Morris, 2009). Different pruning strategies have been extensively studied in various grape growing regions
and grape varieties to achieve sustainable vine vegetative and reproductive growth, often referred to as vine
or vineyard balance (Howell, 2001). Some of the contemporary vineyard mechanization systems in vineyards
during the dormant season include (in sequence) mechanical pre-pruning, manual pruning follow-up, and
mechanical shoot or fruit thinning to maintain vineyard balance (Bates, 2014).

Grapes are the leading fruits based on the production volume in the United States (National Agricultural
Statistics Service, 2019). Its grape industry mainly consists of wine, table, juice, and raisin varieties that
combined produced around 7.4 million tons of produce in 2017 (National Agricultural Statistics Service,
2019), (Economic Research Service, 2016) and is currently valued at the U.S. $6.6 billion. Despite its
impressive growth in the last decade, grape industry continues to rely on hand labor for many operations.
Among the most labor-intensive and costly tasks in grape production are harvesting, pruning, cluster thinning
and equipment operation. Pruning is often labeled as one of the top three costly tasks that could take up
a quarter of labor costs in the fruit production cycle (Johnson and CourtneyRoss, 2016). According to
the University of California Cost and Return Studies in 2017 (Fidelibus et al., 2018; Alston et al., 2018),
table grape growers can annually incur operating costs up to $18,000 per acre to generate income of about
$30,000 per acre (Fidelibus et al., 2018). These accounts to approximately 45 percent of costs just for labor.
Future projection of the labor issue is expected to become more critical both in terms of uncertainty in the
availability and increasing costs (Fennimore and Doohan, 2008; Calvin and Martin, 2010). These concerns
about labor supply have promoted renewed focus and enhanced interest in mechanization and the use of
advanced technologies to secure long-term sustainability of grape and fresh fruit industry, in general.

To reduce labor cost, vineyard mechanization research has played an important role in the grape processing
industry in the U.S. The invention and adoption of the mechanical grape harvester in the early 1970s
eliminated hand harvest as a labor issue in the grape juice industry. Research and development of mechanical
pruning has continued since the mid-1970’s (Morris, 2007) and it alone has further reduced labor costs.
However, the lack of specificity in retained nodes causes the vines to be over-cropped (out of balance) with
poor fruit quality (Bates, 2008), (Bates and Morris, 2009). This lack of selective pruning capability only
provides a partial solution as additional follow operations are often required to complete the task that
further increases production cost. Grapevines are perennial plants with indeterminant growth habits, so
canopy structures are highly vigorous, and the entanglement of canes quickly lead to canopies that are too
complex to analyze even for trained human eyes, let alone for computer vision algorithms. Thus, a robotic
pruner as a follow-up operation after mechanical pre-pruning could be a pragmatic solution. This work
presents a systematic approach to integrate robotic systems to fully automate hand follow-up operations after
mechanically pre-pruning. Further, the profit margins for commercial vine production in general are low,
the quantity and quality of manual labor is declining while the cost for fuel and fertilizers are ever-increasing
(Uzes and Skinkis, 2016). The development of automated robotic pruning as the mechanical pruning follow-
up operation would further reduce labor costs and increase specificity in retained node quantity and quality.
The growing region considered is located in western New York, one of the largest juice grape producers in
the U.S.

Our long-term goal is to develop a commercially viable and fully autonomous pruning system to reduce depen-
dency on seasonal semi-skilled workers while improving productivity. The overall objective is to investigate
robotic technology to significantly improve and stabilize the balance between vegetative and reproductive
growth that would yield better fruit quality and predictable crop load. Our approach deviates significantly
from the established paradigm in agricultural robotics in two major ways. Firstly, it is recognized that a
grapevine training system that facilitates robotic technology in vineyards is key to successful implementation
of autonomous and selective pruning of vines. Thus, the commercial vineyard in our study was specifically
designed and is constantly modified to facilitate automation. Second, the design of the proposed robot
is multi-functional with capability to perform other tasks such as autonomous multi-sensor data collection
throughout the growing seasons while remaining compatible with different varieties and canopy architectures
of vines that adds more novelty to existing systems and potential for commercialization.



The remainder of this paper is organized as follows: Sections 2 discusses prior work in this field and how
the outcomes of the previous research motivated some design selections. In Section 3, we describe the work
environment modifications and basic viticultural terminologies for context. A key requirement for accurate
perception for vine modeling and manipulation in complex environments in the outdoors was a robust
illumination invariant camera system. The inclusion of such camera system to measure thin vine structures
in this systems integration work is based on (Silwal et al., 2021). Similarly, the 3D computer vision pipelines
to generate and process vine models are based on shortcoming of 2D methods previously reported work by
(Botterill et al., 2017a). The camera design consideration along with navigation and manipulation pipelines
for robotic pruning are detailed under Section 4. Section 5 reports the results and lessons learned from
field-testing of the pruner in a commercial vineyard. Finally, some concluding thoughts and discussion on
further improving the robustness of the current design are in Section 6.

2 Relevant literature

In the past several decades, research on the development and use of robotic systems for various agricultural
tasks have been widely studied by the scientific community. Automated solutions for sowing seeding, mon-
itoring or pest-detection are widely documented in the literature (Gollakota and Srinivas, 2011; Diago and
Tardaguila, 2015; Ebrahimi et al., 2017; Li et al., 2009). These are complex systems designed to work in
unstructured environments and changing lighting conditions (Bac et al., 2014; Gongal et al., 2015). One of
the most targeted applications of robotics in agriculture is harvesting of fruits and vegetables. In a recent
work, (Bac et al., 2014) reviewed 36 different robotic projects completed between the years 1985 and 2012.
All reviewed projects were developed for fruit or vegetable harvesting. Historically, the limiting factor in
perception has been to robustly detecting fruit under occlusion and uncontrolled natural illumination (De-An
et al., 2011; Li et al., 2011) while removing fruits without damaging and achieving picking speed comparable
to human picker has been the major bottleneck in the manipulation side (Botterill et al., 2017b). Despite
the obvious advantage of automated pruning and the underlying commercial benefit, automated pruning on
the other hand has not received much attention when compared to harvesting. The lack of research interest
and progress could be attributed to the complexity of the task itself.

For harvesting applications, the target fruits are generally easy to reach, and simple point-to-point paths
are enough without the need for collision avoidance (Botterill et al., 2017b). Pruning, on the other hand,
presents significant challenges as the system not only has to detect the canopy structure but also measure
topological parameters such as the location and orientation of the cutting points in the branches (He and
Schupp, 2018; Tabb and Medeiros, 2017a). As vine structures become more vigorous, the entanglement of
multiple canes could easily become too complex to solve. In the past, very limited attempts have been made
to design and evaluate a full scale robotic system for pruning vines. A robot system to spur prune grape
vine was designed by Vision Robotics Corporation in 2015 (Vision Robotics Corp., 2020). This commercial
prototype used a stereo camera to identify and localize cut-point in canes and an industrial robot arm to prune
highly manicured vine structures. However, the performance characteristics, design details on perception and
manipulation are unknown and publicly not shared. A recent full-scale vine pruning prototype consisting of a
robot arm, multi-camera system and over-the-row supportive structure for controlled lighting was proposed
by (Botterill et al., 2017b). This system generated models of vines for collision free manipulation and
autonomously pruned a row of a vineyard.

Robotic systems designed to interact with plants such as pruning of dormant vines require robust perception
capabilities for motion planning and manipulation in unstructured environments. Before such interaction
happens in robotic pruning, locating the pruning points is a necessary step, which itself is a challenging
problem given that vines lack of consistent structures in their natural form. To automate the process of
pruning point detection in vines, (Corbett-Davies et al., 2012) presented an AI-based expert system. It
was based on rules defined by a viticulturist and used 3D topological features of the tree such as length,
curvature, angle, etc. in deciding to whether to keep or prune the branches. Similarly, (Katyara et al.,
2021) used a combination of mean predictive histogram of gradients and statistical pattern recognition with
K-means algorithm to classify pruning locations. These resent efforts used some form of optimization-based



approach to identify pruning locations in vines. In pruning, the answer to where to make cuts is dictated
by the pruning rules set by viticulturist. However, regardless of pruning rule, the number of buds retained
plays an important role as the new parts of the vine (both vegetative and reproductive) emerges from the
retained buds. To our best knowledge, only our work physically detects and associates buds individually to
each cane for the pruning decision not only to closely resemble manual pruning but also to prevent accidental
over-pruning.

Furthermore, to identify pruning locations in complex vine structures accurately, additional semantic un-
derstanding of the scene is required. For example, the segmentation of the canes from vine structures and
the precise measurement of important topological parameters such as bud distribution and cane lengths.
Getting a detailed semantic map of plants in real time and consistently in the outdoors has always been
a bottleneck in pruning and perception-based agricultural robotics, in general (Kazmi et al., 2014; Houle
et al., 2010). One of the major factors affecting consistency in having such capability is the changing outdoor
lighting conditions that affects image quality. Historically, to limit effects from changing outdoor illumina-
tion, researchers have relied on external structures with controlled lighting. Such as by (Marin et al., 2015;
Botterill et al., 2013), (Vision Robotics Corp., 2020) where they addressed the background and illumination
challenges by employing a wheeled platform with controlled lighting that completely covered the vines dur-
ing imaging. The large platform had to be pulled along the rows at low speeds, resulting in a complex and
slow application for pruning. Similarly, (Kicherer et al., 2017) presented two different approaches to avoid
uncontrolled lighting conditions and the presence of the vines from another row in the background. First,
manual segmentation of images using an artificial white background and secondly the use of a multi-camera
system for depth reconstruction. A robotic system to measure tree traits by 3D reconstruction of a fruit-tree
in field settings was also presented by (Tabb and Medeiros, 2017b). They measured parameters such as
branching structure, branch diameter, length and angle with low mean square error but required extensive
computation time (more than 5 minutes per tree) making it not suitable for real-time in-field applications.

In a similar application, (Tabb and Medeiros, 2018) present a super-pixel based image segmentation method
for semantic segmentation in field environments for tree reconstruction and apple flower detection. It also
involved using a mobile background unit and capturing hundreds of images per tree. Furthermore, image-
based cane segmentation and applied Gibbs sampling was used to recover 2D structures of a dormant
season grape plant from images by (Marin et al., 2015). They also presented a quantitative comparison
of their method with previous work on 2D cane structure extraction (Botterill et al., 2013). Although
their method performed well in detecting cane segments, it suffers from low precision due to its inability
to detect branching points and hence ending up with disjoint cane segments. Their system also relied on
a customized background screen in the field to perform foreground-background segmentation. In a similar
study, (Millan et al., 2019) presented an image-based cane segmentation method to assess pruning weight
in a vineyard. They overcame the background segmentation challenge in outdoor environment by using
a white background to avoid the presence of the vines from another row in the scene and also by taking
images at night without any background. Their research was more focused on background-cordon-trunk-cane
segmentation for pruning weight assessment rather than pruning point identification. To achieve consistent
image exposure in any lighting condition, (Pothen and Nuske, 2016) used high resolution stereo sensor with
flash to predict yield in vineyards from image-based counting for grapes. The use of flash imagery in this
study generated images with uniform white balance and had minimal effects from natural illumination. Our
design of the camera system in this paper is motivated by this work. In a follow-up study, we show that
the consistency in images not only facilitate classical computer vision algorithm but also tend to reduce the
amount of data required to train deep-learning networks (Silwal et al., 2021).

Another aspect that makes a robotic system especially valuable in agricultural applications is its capability to
navigate around the environment. Agricultural fields normally have off-road terrains where any vehicle has to
drive in a safe, socially predictable, and in some cases energy-efficient manner. Challenges including noise in
the sensors, loss of traction, space constraints, among others make this task specially complicated. Depending
on the application and the type of crops, various strategies using perception, planning and control have been
studied to develop autonomous or semi-autonomous systems to drive in these scenarios (Mousazadeh, 2013;
Bechar and Vigneault, 2016). The perception subsystem normally uses data from cameras, laser range finders,



inertial sensors (IMU) or GPS receivers to obtain information about the environment and localize the robot
within a map (Chen et al., 2015) or use SLAM algorithms (Abouzahir et al., 2018). With the continuous
improvement in computation capabilities, machine learning approaches have become popular for this task,
mainly using visual sensors (Chen et al., 2020). Additionally, a diverse group of planners and controllers
have been designed and used to guide and command robots to navigate in Ag settings (Papadakis, 2013;
Ding et al., 2018). For example, in (Chen et al., 2020) a local planner was combined with a custom control
law for an Ackerman vehicle driving in a hazelnut orchard. In this case, both the planner and the controller
were designed to account for the kinematic constraints of the vehicle as well as the space restrictions that
limited the maneuverability. Other than custom control laws, the stability, accuracy, and smoothness in the
navigation that predictive approaches provide made them especially suitable for agricultural applications
(Ding et al., 2018). Furthermore, when the characteristics of the terrain strongly constrain the vehicle
movement, predictive traction control strategies have arisen as a suitable solution (Sunusi et al., 2020).
The mentioned perception, planning and control approaches have been successfully implemented mainly
for supervision and sensing tasks (Fountas et al., 2020). However, little work has been reported in the
integration of an autonomous navigation system to work alongside specific complex agricultural activities
such as harvesting and pruning. In fact, the design and evaluation of a methodology for an integrated
autonomous system capable to perform these tasks remains as a gap in field applications.

In summary, because of very complex requirement in perception and actuation, extremely limited work and
success has been seen in robotic pruning of grapevines and pruning in general. The existing prototypes rely
on external physical structure (over the row platform) for acquiring images in the outdoors. This makes
the robot’s ability to turn, enter, and row following in agricultural terrain extremely challenging and less
pragmatic. Most importantly, the rigid frame designs further limits compatibility to different varieties and
canopy architecture that could potentially limit commercial adoption. We believe that our rugged and
modular robot equipped with an illumination invariant camera system and novel approach to perception
and manipulation will lead to a pragmatic and economical solution for automated pruning.

3 Field environment and workspace modifications

Figure 1: Dormant Concord grapevines before and after mechanical pre-pruning (left top and bottom) with
an OXBO V-Mech sprawl pre-pruner (right).

The vineyard used for this study was located at the Cornell Lake Erie Research and Extension Laboratory
in Portland, New York. Concord (Vitis labruscana, Baily) grapevines were own-rooted and planted in
Chenango gravel-loam soil in 2012 at 2.6 m row by 2.4 m vine spacing and trained in bi-lateral cordon
architecture with an average cordon height of 1.8 m. This variety of grape vine has indeterminant growth
habits that results in canopy structures that are vigorous with high degree of cane entanglements, which
creates a work environment where even manual pruning becomes a cumbersome task. A standard way in
the industry eases labor intensity by mechanically pre-pruning the vines. The mechanical pre-pruners such
as the VMech pre-pruning head comb grape canes up or down (white fingers Fig. 1 right) into reciprocating



cutter bars (red vertical Fig. 1 right) that have an adjustable mechanism to retain longer or shorter canes.
This mechanical pre-processing step, although a non-selective process, greatly minimized the complexity of
the work environment. Following this industrial standard, in our experiments we mechanically pre-pruned
the vines with an OXBO VMech 1210 Tool Arm and Sprawl pre-pruner (Vmech LLC, Fresno, CA). The
mechanical pre-pruner was attached to a tractor and manually driven along the rows and was calibrated
to remove canes greater than five nodes long. The result of mechanical pre-pruning and the pre-pruning
machine are shown in Fig. 1.

Figure 2: Dormant grapevine
canopy showing canes, cordon,
trellis, buds, and nodes.

Additionally, during our latest field trip (which was pushed towards the
end of the pruning season because of the COVID-19 global pandemic),
some of the vines that started to show vegetative growth were trimmed
to retain its original dormant shape by removing the new shoots.

For context, the following brief definitions provide description of the
vine canopy and commonly used terminologies in viticulture (see Fig
2).

• Bud: A bud is a growing point that develops in the leaf axils and
often regarded as a compressed shoot.

• Shoot: New green growth developing from a bud.

• Cane: A matured long, woody shoot after leaf fall.

• Node: The bulged part of a cane where buds are attached.

• Cordon: The main lateral expansion of the trunk that supports
shoots, canes, and fruits.

• Pruning rule: A set of rules that define a systematic way to remove
older canes from grapevines.

4 Methods

This section describes all components of Bumblebee. First, we describe the mechanical design of the robot
that includes a prismatic base to increase the reachable workspace and then the design of the end-effector
to prune vines. Secondly, we then detail the perception pipeline that describes the camera system, 3D
reconstruction of vines from multiple views and novel 3D cane segmentation algorithm. The rest of the
section elaborates motion planning, navigation, and systems integration components.

4.1 Mechanical design

4.1.1 Manipulator

An unrestrained rigid body in 3D space has 6 Degrees of Freedom (DoF) described by the three translations
and rotational angles about the three independent axes (Donald, 1984). In theory, a robot arm with at least
6 DoF is required to achieve any pose in the workspace. In practice, this capability is severely limited by
different factors such as singularities, self-collisions, collision models of the environment, etc. to name a few.
However, in kinematically redundant mechanisms, the desired motion of the tool-end or the end-effector
can be accomplished in an unlimited number of ways. In the design of the robotic manipulator for pruning
dormant season vines, we extend the 6 DoF of an UR5 robot arm to 7 DoF by adding a prismatic joint to
the base, as shown in Fig. 3, left.

Since the DoF of the manipulator is greater than the Degrees of Constraints (DoC), our proposed design is
kinematically redundant and offers several advantages. First, the kinematic redundancy physically allows the



end-effector to achieve any combination of orientations required to reach pruning locations in a complex and
unstructured work environment. Secondly, the motion of the robot arm is restricted by multiple constrains,
such as joint limits and end-effector poses. These restrictions further narrow the convergence of the Inverse
Kinematics (IK) and motion planning algorithms. Having redundancy greatly increases the odds of finding
possible solutions and improves the convergence time and accuracy of these algorithms. And lastly, the span
of the prismatic base drastically increases the reachable work envelope of the arm, as Fig. 3, right shows.
This feature was particularly designed to provide the system with the ability to reach the entirety of the vine
from a single stationary position without having to move the mobile base to new locations to work on the
same vine. Thus, the possibilities of inducing errors in both manipulation and perception pipelines caused
by the motion of the ground robot and the repetitive sensing of the same environment is highly reduced.
The design of the redundant P6R open chain robot arm is shown in Fig. 3 left.

Figure 3: CAD rendering of the 7-DoF robot with its components (left). Reachable endpoint positions in the
work envelope (right). A wire diagram is added to aid visualization.

Although posing joint restrictions limits the full range of motion of each joint, constraints are important
factors in motion planning. To control unnatural, unachievable, or unnecessary motions, several joint limits
and constraints were set, as described in Table 1. A virtual wall (behind the linear base in Fig. 3 left)
imposed restrictions on the motion planner as target locations were always in front of the arm. This resulted
in the “elongated hemispherical” shape of the work envelope for the 7-DoF arm.

Table 1: Manipulator parameters and joint information.

Robot Parameters Joint Information
Robot Parameter Value Joint Name Lower Limits Upper Limits

Degrees of Freedom 7 Base -0.675m 0.675m
Max canopy depth reach 0.9 m Shoulder pan -2.43 rad 2.01 rad
Prismatic base length 1.35 m Shoulder tilt -2.62rad 0.05 rad
Max joint velocity 0.15m/s & 1.1 rad/s* Elbow -2.62 rad 0.05 rad
Max joint acceleration 0.25m/s & 0.25 rad/s* Writs 1 -3.14 rad 3.14 rad
Workspace volume 3.95 m3 Wrist 2 -3.14 rad 3.14 rad
End-effector weight 0.5 kg (1.2 lbs.) Wrist 3 -3.14 rad 3.14 rad
*Values used during the experiment.

4.1.2 End-effector

Pruning the grape vines require making precision cuts at a specific location in the canes. However, before
such cuts could be made, it was important to understand the mechanical properties of the canes, especially
the force required to cut dormant canes for the proper design of the pruning end-effector. Due to numerous
environmental factors such as soil properties and access to nutrients and water, vines exhibit wide variation
in the length and diameter of dormant canes (Bates, 2017). In this experiment, we selected 30 samples of



Concord canes with a wide range in sizes and age to quantify the force required for a successful cut. On
average, the cane diameter of the collected samples varied from 5 mm to 11 mm.

Figure 4: A CAD model showing the design
and components of the end-effector. A com-
pression spring (not shown here) keeps tension
on the pulley and has a mechanical advantage
of 3.

While the freshly cut live canes showed the presence of hard
outer shell with soft internal tissues, dead samples exhibited
relatively harder, shrunk, and dry internals and required
higher force to cut. An experimental setup for this quanti-
tative experiment is shown in Fig. 5 (left). The mechanism
of using hand-held shears to cut canes (like scissors) op-
erates under the principles of the first-class lever, and it
involves applying normal force on both handles at the same
time. The experimental setup in Fig. 5 (left) simplifies this
requirement to just one normal force by fixing one of the
handles to a rigid surface. An incremental static load was
then applied at the top of the movable handle to cut the
cane samples, which were set at a fixed distance from the
pivot and placed orthogonal to the cutting plane. Then, the
total weight (load) along with the mechanical advantage of
the lever at the abscission point provided the cutting force.
This experiment was repeated on all sample canes. On av-
erage, 320 N force (at the abscission point) were required to
cut a typical cane with 8 mm diameter. In Fig. 5 (right), a fairly linear relationship (R2 = 0.74) can be seen
between cane diameter and the normal force required for cutting.

Figure 5: Experimental setup to measure force required to cut dormant canes (left) with a bypass pruner.
Correlation plot between cane diameter and cutting force (right).

A popular choice among professional pruners to prune grape vines is bypass pruning shears. This variety
of pruning shears have blades that completely “bypass” each other for precise cuts and clean separations
of the canes. Motivated by this pragmatic feature, the design of the end-effector includes a similar bypass
mechanism (Fig. 4). In this custom designed end-effector, one end of the scissors was fixed and bolted to
the frame of the end-effector, whereas the other end was movable and actuated with a combination of a
high torque (3 Nm) servo motor and floating pulleys. The floating pulley mechanism transferred power from
the motor to the blades with a 200 lb (90.72 kg) fishing line. This simple machine system also added a
mechanical advantage (M.A) of 6 and increased the overall factor of safety by nearly 4 folds. In the design
of the end-effector, the results of the experiment described above mostly assisted in the selection of the
motor with adequate torque. Essentially, matching the torque required to cut the canes at a fixed distance
from the pivot to the max-stall torque of the motor. To reduce cost and weight, a slightly undersized motor



(MX-64AT from Dynamixel Inc.) was selected, which required us to use simple machines to increase the
mechanical advantage of the system. The combination of lightweight materials, simple machine, and high
torque servo motor ensured a small (0.45 kg) yet powerful end-effector that fell well within the payload
capacity (5 kg) of the robot arm. The small footprint and weight of the end-effector were also critical to
ensure not only wide ranges of accelerations while executing motion trajectories but most importantly to
get full horizontal extension of the manipulator into the canopy which could have been unattainable with
heavier and larger end-effectors.

4.2 Perception

The overall perception pipeline to perceive the vines and identifying the pruning locations is as shown in
Fig. 6. The major steps in the pipeline involve acquiring static images from fourteen view points, point
cloud registration using ICP algorithm, bud detection with Faster-RCNN, and cut-point detection with 3D
region growing-based cane segmentation and a graph search algorithm.

Figure 6: A block diagram with all major steps in the perception pipeline. Program flows from left to right.

4.2.1 Camera system

Performance of computer vision algorithms in the outdoor greatly depend on factors such as motion blur
and changing illumination, to name a few. Among other, abrupt changes in the lighting condition can alter
image quality that can lead to large data requirement in machine learning-based computer vision algorithms
to compensate for variance in images (Silwal et al., 2021). To minimize such effect, the camera system in
our design uses active lighting that greatly minimizes the effects of varying environmental lighting while
maintaining consistent image exposure. The detailed description, functionality and advantages of the active
light camera system are described in our previous work (Silwal et al., 2021). The camera system in this paper
uses two of these cameras (Fig. 12) in a top-bottom stereo configuration and moved along the linear slide
to image the vines from different view-points. The bottom stereo provided front views from a plane parallel
to the vines, whereas the top stereo provided tilted views from higher elevation to include occluded parts
deeper into the canopy not visible from just the front view. Altogether, the 3D information from multi-view
geometry enabled us to generate accurate and complete 3D models of complex vine structures. The design
of the dual stereo camera with the linear base is shown in Fig. 3 (left) and a sample image-set of a vine with
and without active lighting is shown below in Fig. 15.

4.2.2 Dense 3D reconstruction

One of the critical pieces of perceptual information required for autonomous pruning is precise and accurate
3D modeling of the vines. Once the 3D model is generated, the analysis of the plant geometry and topology
can be automated, which also becomes essential for obstacle detection and ultimately in detecting of the
pruning locations. To generate a dense 3D point cloud of the vines, the dual stereo camera imaged vines
at seven precisely set positions along the liner slider. First, the individual point clouds from the top and
bottom cameras at the seven different linear positions were registered separately (PCLtop & PCLbottom)
using Eqn. 1. To keep the point cloud registration time low, PCLtop & PCLbottom were registered in parallel.
As show in Eqn.2, the final 3D model (PCLfinal) of the vine was then constructed by registering PCLtop



and PCLbottom using the top-bottom camera extrinsic parameters (T top2bottom). Alternatively, each top
and bottom point cloud pair could have been stitched in series to generate PCLfinal. However, because
of higher point cloud overlap and accurate initial transformation from the slider, this sequence of stitching
individually registered PCLtop & PCLbottom resulted in better reconstructed model.

PCL top/bottom = PCL1 +
∑
i=2:n

PCLi ∗ Ti−1 (1)

PCLfinal = PCLbottom + PCLtop ∗ Ttop2bottom (2)

Given two point clouds, fixed (F ) and moving (M) where, F = {f1, f2, . . . , fn}; fi ∈ R3 and M =
{m1,m2 . . . ,mn}; mi ∈ R3, the Iterative Closest Point (ICP) algorithm finds a rotation matrix R and
a translation vector t such that error between transformed M and F point clouds is minimum. We take
advantage of the precise initial transformation or correspondence between F and M provided by the lin-
ear sliding mechanism and calculate R and t in closed form. For this point cloud registration process, we
experimented with the non-linear version of the point-to-plane ICP by (Fitzgibbon, 2003). This variant of
ICP provides more accurate estimation in cases where consecutive point clouds have different densities and
exact correspondences are sparse (Fitzgibbon, 2003). Although the point-to-plane ICP takes more time per
iteration due to the added cost of point cloud normal computation, it usually converges in fewer iterations
compared to classical ICPs. The point-to-plane ICP for our pipeline iteratively estimates R and t to min-
imize the distance between every point mi and the tangent plane at its corresponding point fi. A tangent
plane is represented by its unit normal ni computed around a small 3D neighborhood of 50 points in the
vicinity of the point fi. To reduce computation time, the size of each point cloud from the camera was
reduced using voxel grid sampling and outliers were removed using statistical outlier filtering prior to ICP
registration. The governing nonlinear equation is shown in Eqn. 3

min
R,t

k∑
i=1

(|(Rmi + t− fi)Tni|2) (3)

4.2.3 Bud detection

A vine node usually consists of several buds (also known as compound bud) and has primary, secondary, and
tertiary backups. During the growing season, if the primary bud is damaged for reasons such as external
injury, frost bite or other environmental factors, vines sequentially release each remaining backup to replace
the damaged/fallen buds. These buds are relatively small and are randomly positioned in the node, which
makes it harder to detect in images and 3d models. Thus, despite the presence of multiple buds in a
single node, detecting and counting buds as nodes is a reasonable approach. Moreover, this assumption is
valid considering the fact that the secondary and tertiary buds generally bear insignificant amount of fruit
compared to the primary (Hellman, 2019). In this work, the task of detecting buds is accomplished by
detecting nodes. A node as described in Section 3 is the bulged part of the cane that is more visible and has
distinct features compared to the rest of the vine. From this point forward, we will use the terms bud and
node interchangeably.

Detecting buds is a critical step in the pruning process of grape vines. Pruning rules such as cane and spur
pruning which are popular in commercial settings involve retaining a certain number of buds per cane (King,
2021). Thus, accurate counting of buds is extremely important for autonomous pruning of dormant grape
vines. To count buds, we leverage on the robustness of deep learning-based 2D object detection in the color
images of the vines. We used Faster-RCNN object detection network (Ren et al., 2015) to detect buds in one
image from each stereo pair (top and bottom). For training, we used transfer learning and initialized the
network weights with the pre-trained imagenet model before fine-tuning the network to our custom dataset.
It consisted of 120 hand labeled images of buds collected prior to the field experiments. Although the number
of images in the dataset seem small, the number of instances of buds per image were significantly larger. On
average, 45 bud instances were present per image.



The detected buds in the 2D images (top and bottom) were then projected into the 3D space using the
camera intrinsic parameters that produced sparse point clouds of the buds. This operation occurred in
parallel to the point cloud registration process discussed in the above section and utilized the optimized ICP
transformations for final registration. The combination of registered vine and bud point cloud (here after
referred to as input point cloud, PCi) completed the 3D vine modeling process. The bud-detection network
datasets details and training parameters are listed in Table 2 and 3 respectively. Figure 7 show sample
detections and 3D projection of the buds in the top camera image.

Table 2: Dataset details for the bud detection network.

Network Name No. of images Image size No. of buds
Faster-RCNN VGG16 120 2448 x 2048 5420

Table 3: Training parameters for the bud detection network.

Training samples Test images Learning rate Epochs Augmentation
85 35 0.01 300 Horizontal flip, scale, random crop

4.2.4 Obstacle detection

Using the dense 3D point cloud and non-linear point to plane ICP registration, we were able to consistently
generate precise and clean point clouds of vines with buds that could be directly used for manipulation
tasks. To avoid damage and reduce contact between the robot arm with the vine and its rigid support
structure, it was necessary to define obstacles. In this work, only the central trunk with the metal post and
horizontal cordons were taken as obstacles, as contact with theses rigid structures could potentially cause
serious damage. However, as canes are relatively flexible and move when pushed, contacts between these soft
objects and the robot arm were allowed to facilitate the motion planning (see Section 4.3.1 for more details).
Occupancy grid maps are popular choices to define occupied versus free spaces in the robot’s workspace.
To define cordon and trellis wire as obstacles, a RANSAC algorithm (Derpanis, 2010) fitted two (vertical
and horizontal) lines in the 3D model of the vines (Fig. 7 right). As seen in Fig. 7 (left), the new vine
architecture has a vertical metal post to support the trunk and a horizontal trellis for the cordon to extend
laterally. The existence of these features in the point cloud greatly benefited the RANSAC algorithm to
precisely and consistently fit 3D lines in all vines used in our experiment. These fitted 3D lines were then
the only elements taken as occupied space in the Octomap occupancy grid mapping algorithm (Wurm et al.,
2010) (Fig. 7 right).

4.2.5 Region growing for cane segmentation

In general, the purpose of the region growing algorithms is to merge adjacent data points depending on
a region membership criterion. In 3D point cloud space, this criterion could be smoothness constraints,
resulting in points with similar smoothness profile clustered together. In our case, we use region growing
algorithm for cane segmentation by clustering 3D points belonging to the canes. As our 3D structures of
interest are thin canes, they did not have planar surfaces for normal computation to make use of a normal
based smoothness constraint. Hence, we propose a novel region growing based segmentation method that
utilizes local structural properties of the vines. We used Singular Value Decomposition (SVD) (Stewart,
1993) on a small neighborhood of points of the vine’s point cloud to understand the local structure of
the vine in that small area. If there was only one dominant vector after SVD, that indicated the local
neighborhood has a linear shape. If the number of dominant vectors was 2 or 3 that indicated the local
shape is planar like and sphere like respectively. Using this local shape information, we were able to segment
out the linear portions of a cane from cane-cordon or cane-cane intersection regions which have non-linear
3D distribution in the local neighborhood.



Figure 7: Bud detection with Faster-RCNN (left) marked by the yellow bounding boxes. Use of just cordon
and trellis wire as hard obstacles for motion planning (right).

We started by randomly selecting a 3D projected bud location as a seed point. A set of points around
the seed location were then extracted using a radial neighborhood search operation. This search radius (a
hyperparameter) was pre-determined empirically based on the average distance between two consecutive buds
in canes. Then, SVD calculated the singular vectors and values from the set of neighborhood points. For
the extracted set of input points N = (Pi) ∈ Rmx3, the output singular values (non-zero diagonal elements)
were M = (Si) ∈ R1x3. The normalized singular values were then passed through a Support Vector Machine
(SVM) that learned to classify patterns in the singular values (Fig. 8) as cane or intersection region. Based
on the inference from the SVM, the set of extracted points were then labeled as a part of cane or intersection
region between cane and cordon. This operation was iterated for all bud locations, and the steps are listed
in the algorithm box 1. The training data for SVM involved 120 manually picked samples of cane and
intersection regions. About 70% (84 samples) were used for training and the remaining 30% for test and
validation.

Figure 8: A 3D vine model with buds (red dots) as seeding location for segmentation (left). Segmented canes
(center and blue colored). The circles 1 and 2 belong to canes, whereas circles 3 and 4 belong to cordon. S1,
S2, and S3 are the singular values after SVD for each circled region (right) with unique patterns.

4.2.6 Pruning rule

Pruning rules define a systematic way to remove older canes to keep the vigor and vine balance in control.
Cane pruning and spur pruning are two of the most practiced pruning strategies in the U.S. grape industry.
One major difference between these two rules is the number of buds retained after pruning. Cane pruning
usually retains longer cane segments with variable counts of buds per canes, while spur pruning leaves fixed
but smaller number of buds per canes. Algorithmically, cane pruning requires the ability to track buds in
longer sections of canes, which could be a very difficult task because of the high degree of entanglement



Algorithm 1: Point cloud region growing

Data: Point cloud P , Directions=positive, negative
Result: Point cloud R
S ←− Bud Detections;
A←− {1, ..., |P |} - Cordon points;
while S 6= Φ do

s element of S;
if s is visited then

remove s from S;
continue

end
for d ∈ D do

N ←− Ω(s) ; /* Neighbour finding function */

singular vecs ←−SVD(N);
if SVM(Dominant vecs) is true then

point ←− s + singular vec ;
Add point to S

end
else End points←− End points ∪ s;
remove s from S

end
Mark points in N as visited.

end

Algorithm 2: Cut-point detection

Data: Graph with vertices V and edges E
Result: Cut-point pose C(x, y, z, α, β, γ)
C ←− Cut Points
v ←− V + VB ;VB ∈ {Bud V ertices}
e←− E + EB ;EB ∈ {Bud Edges}
n←− No. of buds to keep ; /* Pruning rule */

g ←− {graph(v, e)} ; /* Set of disjoint graphs */

G←− min span tree(g)
R←− r ; /* Root nodes */

for i ∈ G do
Li ←− Leaf nodes of Gi

all paths←− find multiple paths(Gi, Ri, Li, thresh)
unique paths←− sequence match(all paths)
for i ∈ unique paths do

bud index←− depth first search(unique pathsi)
P ←− {bud index[n], bud index[n+ 1]}

end
C ←− { P.x, P.y, P.z, α, β, γ}

end

between the canes. On the other hand, spur pruning has simpler requirements and pruning locations are
close to the cordons. For a proof-of-concept robotic pruning of vines, we adopted a simplified spur pruning
rule to only retain 4 buds per cane. In addition to bud retention, pruning rules also necessitate qualitative
parameters such as cane diameter and health of canes and buds. In this proof-of-concept design, we considered
all canes for pruning and list the inclusion of qualitative parameters as future enhancements.



4.2.7 Cut-point detection

Once the points belonging to just canes are segmented from the rest of the vine structure, the next step in
the pipeline was to identify pruning locations. One possible approach could be to further segment clusters
of multiple canes into individual clusters and process each cane individually. However, an additional seg-
mentation or clustering step has the potential to induce more uncertainties, as segmentation and clustering
processes are not perfect in themselves. So our approach deviates from this logic and processes all segmented
canes at once using a graph-based approach. The SVM model explained in the previous section not only
labels cane regions in the 3D models, but intersection regions between canes with cordons as well. The
algorithm described in this section essentially uses the cane-cordon intersection region to solve the graphs.

To identify pruning locations, the foremost requirement in our pipeline was to convert the segmented cane-
bud point clouds into an undirected acyclic graph G. The first step in this process involved the use of Octree
data structure to voxelize the cane clusters. The octree data structure recursively subdivides 3D point clouds
into octants or voxels until a minimum voxel size is reached (Wurm et al., 2010). Here, an octree with a
resolution of 5 cm was used to voxelize the extracted cane point cloud. Once the voxelization process was
completed, the centroid of each voxel was extracted as a sub-sample of the canes. This was necessary to
maintain the size of the graph and to keep computation time as low as possible. Subsequently, to generate
the graph, a 3D kernel (Fig 9) traversed throughout the equally spaced octree centroids of the canes. With
each step, the sixteen-neighbor kernel assigned vertices and edges to the voxelized cloud. The vertices and
edges that contained buds were assigned to a special set of vertices VB and edges EB . The post-processing
of the graphs mainly involved the removal of loops using the minimum spanning tree (MST) algorithm. It is
a greedy approach that removes cycles in weighted graphs while picking smallest weighed edges. To preserve
the edges belonging to bud positions, the set of special edges EB were assigned smaller numerical weights,
whereas the rest of the edges were initialized to larger weights. This simple step inherently preserved all bud
vertices and edges, as the global cost of the graph was minimized. Figure 9 demonstrates this logic.

Pruning rules require the correct ordering and numbering of buds per canes, which in our case requires to
properly assign each bud to its respective location in the canes. This process essentially involved converting
the undirected graph to a tree-like data structure that assigned directions in the graph G. By assigning the
cane-cordon intersection region as root nodes in the graph, a depth first search-based (DFS) algorithm first
computed all possible paths to the leaf nodes. As canes have random and complex 3D structures with or
without branching, the paths from the root node to the leaf nodes could have multiple overlapping routes
(Fig. 9). To suppress this ambiguity, a similarity score was computed on all the paths generated by the
DFS algorithm using the sequence matching algorithm from (Jeh and Widom, 2002). This similarity score,
essentially quantified path overlaps between the root nodes and the end points. A threshold of 0.9 (90%
similarity) was used to discard redundant routes in cases if multiple routs were found between the root node
and the leaf nodes on the same cane. On these unique paths, newly discovered buds with respect to the root
node were sequentially ordered, and the pruning points were identified using the pruning rule described in
the previous Section. In our approach, the reduced canopy complexity with pre-pruning greatly facilitated
this heuristic-based bud association algorithm. However, in complex vines with multiple crisscrossing canes,
a more robust approach might be necessary.

Once the pruning locations were identified, the next step in the pipeline was to compute its pose (position
and orientation). A full pose was required as the cutting tool needs to approach the bud with a certain
orientation to successfully make the cut. To calculate the cut-point orientation, we projected cane segments
as 3D vectors on all three perpendicular planes. Here a 3D vector is defined by the 3D coordinates of the
N th and (N + 1)th bud section of the each cane that are projected to the XY, YZ, and ZX plane. The
angles made by the projected line to the respective planes then provide the roll, pitch and yaw angles with
respect to the reference frame. The mid-point of the vector was taken as the pruning location. This process
is depicted in Fig. 10 (left).



Figure 9: The method employed for counting buds manually (left). The octree voxel representation of the
point cloud model (center). Various examples of graph-based method to identify pruning locations (right).
The red, gray, and yellow circles represent bud locations, generic nodes in a graph, and pruning locations
respectively. Similarly, ’R’ represents the root node.

4.3 Manipulation

4.3.1 Motion planning

The kinematic redundancy offered by the 7-DoF manipulator only reaches its full potential when the motion
planning algorithm can incorporate all degrees of freedom in its planning context. The mechanical design
of the robot (Fig. 3 left) uses a 6 DoF off the shelf robot arm with a custom-built prismatic base. With
few modifications, the ROS-MoveIt based planner (Chitta et al., 2012) can be redesigned to plan the joint
trajectories for an integrated 7 DoF arm, but at hardware level custom software drivers split the trajectories
in real time and control all joints synchronously. To plan motion between all cut-points, we choose RRT-
Connect (Kuffner and LaValle, 2000) as an option in the OMPL integrated with ROS that utilizes the entire 7
DoF. The RRT-Connect motion planner provides collision free motion planning features which greatly fit the
requirements for this proof-of-concept prototype (e.g., real time operation, obstacle avoidance or constrained
movement). Additionally, in a comparative study of motion planners for robotic pruning by (Paulin et al.,
2015), RRT and its variants were found to have overall better performance.

Once the poses of the pruning locations were computed, the path of the end-effector to the end goal positions
were divided into to two discrete sets of trajectories. The first set were computed using the RRT-connect
solver and were used to make an initial approach to the cutting point, positioning the tool 15cm ahead of that
cut-point (Fig. 10 right). Once the tool was in this location, the end-effector was commanded to orientate
perpendicularly to the branch that contains the pruning point. Subsequently, to accurately position the
cane in-between the cutting blades, the motion planning scheme then switched to a cartesian path planner.
This cartesian path planner (also from OMPL library) was constrained to maintain the orientation of the
end-effector while inching slowly towards the final pose in a straight line. Then the blades closed and opened
to mark the end of a successful cut operation. This process proved to be effective in much of the experimental
cases; however, it is open-loop as the robot does not have any real-time feedback during the final approach
to the cutting point. In Section 6, we discuss some of the ways to close this loop to enhance the robustness
of the system.

One way to define obstacles for motion planning could be to take the entire vine structure as obstacle
and force planning algorithms to find solutions for all pruning locations. However, motion planning with
collision detection and avoidance can be computationally expensive, especially in the unstructured and



Figure 10: Cut-point detection (left). Three-dimensional vector projection of a cane section in the YZ (red
line – roll angle (α)), ZX (blue line – pitch angle (β)) and XY axis (yellow line – yaw angle (γ)). Pose of the
angle made by the projected line made with respective axes. Initial and final approach to the pruning location
(right).

complex environment of dormant vines. The random arrangement of canes in the robot’s workspace as
obstacles could result in the failure to converge to a solution or -as seen in practice- generate trajectories
that result in erratic movements of the arm. To avoid such situations, collisions between the arm and the
canes were allowed whereas trunk, trellis and cordon that are more structured and easier to identify were
considered as obstacles. In addition to this, once a cutting action was executed, the arm always retracted
backward to the initial pose (similar to the pose shown in Fig 3 right) before planning the path to the next
pruning location. This process generated not only a natural-looking motion, but most importantly provided
more open space for the “connect” heuristics in the RRT-Connect planner to generate effective planning
queries and solutions (Kuffner and LaValle, 2000).

Despite these systematic steps to supervise cautionary motion of the arm, contacts with canes would still be
undesirable. To further minimize contact with canes, the task of sequencing the pruning locations for cutting
operations was optimized using a travelling salesman problem (TSP). The nearest neighbor heuristic-based
TSP exhaustively calculated all possible cutting route combinations and prioritized closer pruning locations
to the ones farther from the end-effector while also minimizing the total travel distance. Although TSP is
NP-harp problem, the small set of pruning locations per vine made the exhaustive optimization task possible
in short duration.

4.4 Navigation

The RTK-GPS receiver mounted on the vehicle, wheel encoders, and the robot’s onboard IMU (Inertial
Measurement Unit) were the main localization sensors in the navigation system. An Extended Kalman
Filter (EKF) fused the IMU, wheel odometry, and RTK position to localize the robot in the real world with
the RTK-base as the reference frame. All RTK-GPS waypoints for autonomous navigation, including the
locations of the vines were manually collected. Also, all vines selected for pruning in this work were located
in the same vineyard row (Fig. 11). However, the current architecture of the vine required us to address the
same vine from both sides of the row. Thus, the main task for the navigation system was to drive the robot
down the aisles, accurately turn and enter the aisle on the other side of the same row while stopping at each
vine selected for pruning. To navigate in-between vineyard rows, we used a Model Predictive Controller
(MPC) (Allgöwer and Zheng, 2012) to follow GPS waypoints.

The MPC controller first connected all waypoints using a spline to produce a smooth global path along with



Figure 11: Top view of the test site with RTK waypoint and pruning locations overlayed. The autonomous
ground robot was capable to drive around the entire block without manual intervention (yellow path). The
blue path correspond to the row selected for autonomous pruning.

curvatures and speed profiles for the complete route. Subsequently, the RTK-GPS points corresponding to
the pruning sites were read, and a local path from the current robot position to the next vine to be pruned
was generated. Additionally, the planner also calculated local speed profiles (based on the global profile)
along with the deceleration and acceleration required to smoothly and accurately stop in front of the tree
trunk and start moving again. This approach allowed us to define parameters such as acceleration and
deceleration ramps or cruise velocity, ensuring to provide a complete plan that minimized jerky motion that
could potentially damage the robot’s components or the crops. For a system with state x and control input
u at time t, the general discrete form of the MPC controller used is shown in Eqn. 4.

min
x(·),u(·)

xT (t0 +N)Qfx(t0 +N) +

t0+N∑
t=t0

xT (t)Qx(t) + uT (t)Ru(t)

subject to: x(t0) = x0

∀t ∈ [t0, t0 +N ] : x(t+ 1) = f(t,x(t),u(t)) (4)

∀t ∈ [t0, t0 +N ] : 0 ≥ s(t,x(t), (t))

Here, N is the time horizon, f(·) is the robot motion model, s represents the path constraints and Q,R,Qf

are the weighting symmetric and positive (semi-) definite matrices. The span of the navigation system for
autonomous pruning only required to travel a distance of two rows (approx. 0.3 km or 0.19 miles) and
it included lane following, stopping between vines, turning, and re-entering. To adequately evaluate the
autonomous navigation system, we tested the self-driving capability in the entire block (1 mile/ 1.6 km).
In this larger navigation experiment, the robot skipped a row entered a new row with every turn without
stopping, as depicted by the yellow path in Fig11. Overall, during this experiment the robot navigated 10
rows and made 9 U-turns autonomously.

4.5 Systems integration

4.5.1 Robot platform

The rugged ground robot (Warthog, Clearpath Robotics Inc.) fitted with a custom aluminum extrusion
frame provided a base platform for the gantry system and the field server. The standalone integrated system
with all perception, manipulation, and navigation components, and hardware are shown in Fig. 12. All



electrical components including the computers, RTK-GPS, and cameras were powered by the ground robot’s
battery except for the arm that was powered with the portable 1000 Watt gas generator for the AC control
box. The edge field server ran on an Intel Xeon E5-2687Wv4 processor with 32GB of RAM and an NVIDIA
GeForce GTX1080 GPU for deep neural networks inferencing. All software were packaged for ROS Kinetic
under Ubuntu 16.04 LTS 64-bit Linux environment. A local NTP server was used to sync the clock for all
sensors and computers for accurate temporal operations in ROS.

Figure 12: Integrated robotic system with 7 DoF robot arm, ground robot, cutting end-effector, dual stereo
cameras, and on-board computers (left). An instance of autonomous pruning (right)

4.5.2 Full autonomy

Figure 13: Finite state machine. Depending on the state of the sub-modules, the state machine transitions
between navigation, manipulation, perception, and error states for autonomous high-level control of the robot.

One complete pruning cycle consists of several tasks that include navigating to the vine position, scanning
and 3D modeling, identifying cut points and executing motion plans to physically removing canes from vines.
For efficient high-level coordination and execution of multiple tasks, we used a finite state machine (FSM) as
shown in Fig. 13. The states in the FSM were navigation, perception, manipulation, and error. Depending
on the status of the sub-modules within each state, the SFM transitions between different states following a
pre-defined sequence for autonomous high-level control of the robot until all vines were pruned. Additionally,
for robustness, each of the sub-processes of the states were programmed with internal error sub-states to
self-diagnose software level issues and pause all operations in the occurrence of events belonging to the higher



level error state. At the higher level error state caused by events such as hardware failure or unknown issues,
after human intervention and fix, the robot continues from its last known location to the next vine.

5 Results

In order to evaluate all the systems that Bumblebee comprises, four datasets were employed. The first one
was used to train and evaluate the bud detector. From this dataset, we selected randomly 5 samples (vines)
to evaluate the reconstruction completeness and the region growing algorithm. The quality of the overall
point cloud generated with the ICP approach was assessed using a single vine imaged in the field conditions.
Finally, a total of 20 vines from a single row in a commercial vineyard were selected for pruning. These vines
were pre-pruned with a mechanical pre-pruning machine to reduce the vigor and simplify the cluttered work
environment. We also provide a brief analysis on how this non-selective process minimize the complexity of
the vines, enabling our system to perform precise pruning.

The methodology employed for all these tests, as well as the results obtained, are described in the following
Sections.

5.1 Pre-pruning

Figure 14: The post pre-pruning statistic of the non-
selective pre-pruning process showing the percentage of
properly pruned, over pruned, and under pruned canes in
the experimental row.

As detailed in Section 3, to simplify the canopy com-
plexity, the vines were mechanically pre-pruned with
an OXBO VMech 1210 Tool Arm and Sprawl pre-
pruner (Fig. 1 right). In the twenty field vines, we
manually counted all canes as well as the number of
buds per cane to evaluate the pre-pruning that set the
stage for robotic operation. In total, 268 canes were
present in these vines with an average of 13 canes per
vine. After the pre-pruning operation, we observed
that 25% of the canes had exactly 4 buds, 35% had
more than 4, and 40% were over pruned with less than
4 buds per cane. Here, “4 buds” is used as a refer-
ence as the simplified spur pruning rule adopted in this
study only required to retain 4 buds per cane. Also,
the distribution of buds ranged from 1 to 14 buds per
cane as a result of non-selective manual pre-pruning
operation. This large variation in the bud distribution
is the variable we aim to minimize with our robotic
pruning system, and the results are presented in the following subsections. As seen in Fig. 14 & 20, the
pre-pruning step not only greatly reduced the vigor of the vines and length of each cane, but also reduced
the total number of canes to be pruned (35%). Additional statistics include 1122 bud counts in total in all
vines with a standard deviation of 2.08 bud counts about the mean of 4 buds per cane.

5.2 Perception and Reachability

Perceiving the environment is usually one of the earliest tasks for autonomous robots. In our case, detection
of dormant buds in 2D images and their projection into the 3D coordinates along with the generation of the
point cloud of the entire vine were some of the initial steps in the perception pipeline. As any inconsistency
in bud detection or significant error in 3D reconstruction could highly affect subsequent processes such as
estimating pruning locations and ultimately pruning, ensuring robust perception capabilities were crucial.



5.2.1 Camera system

The active lighting camera described in Section 4.2.2 was adequate to efficiently suppress affects from natural
illumination. As a result, the camera system was able to produce images with consistent exposure (i.e.,
quality) in all lighting conditions present during the experiments. Figure 15 shows images of the same vine
taken at different time of the day with and without flash. The first image (Fig. 15 left) was taken with the
robot camera in a typical broad daylight whereas the remaining two were taken with the active light camera
(Fig.15 (center) at same time as Fig. 15 (left) and Fig. 15 (right) at night-time). Qualitatively, Fig 15
(center and right) look alike as the flash from the camera in conjunction with fast shutter speed overpowered
day light effects. Quantitatively, the Structural Similarity Index Metric (SSIM) of images taken at various
times of the day with the proposed camera system showed an average similarity of 90%. The SSIM is a
quality metric that embeds structural as well as contrast and luminance as quality parameters (Wang et al.,
2004).

Figure 15: Illumination invariant imaging. A sample image of a test vine taken without flash (left). An image
of the same vine taken at the same instance with flash (center). The nighttime image of the same vine with
flash (right).

Figure 16: The P-R curve for bud detection network with Faster-RCNN network (left). Each yellow bounding
box localizes a bud in the image (right).

As mentioned in Section4.2.3, the bud detection network was trained on 85 images and evaluated in 35.
Consistency in the mage quality is considered as a major contributor for requiring such short amount of data
to train our deep object detector. For instance, in Fig. 15 (center and right), both images appear similar in
exposure, color consistency, and background subtraction regardless of outdoor illumination. The P-R curve
of the trained network is shown in Fig. 16. Additionally, we obtained a mean precision average (mAP)
of 0.93 in the test dataset. A thorough analysis of image quality from our camera system and reduction
in training dataset size to fine-tune deep object detectors is explained in our previous publication ((Silwal
et al., 2021)).



5.2.2 Vine reconstruction

To quantify the uncertainty in the measurement of depth information from cameras, depth measurements
from stereo pairs were compared against highly precise and accurate laser measurements (±0.1 mm reso-
lution). This process included comparing point stereo measurements from 30 different locations in a single
vine at different depth against laser point measurements at the same location. The point measurements
under comparison ranged from 0.2m up to 1m which also represented the reachable span of the robot arm.
As displayed in Fig. 12, the dual stereo rig that images each vine from 7 different positions, producing
14 different views. The overall point cloud registration process was largely facilitated by the precise and
accurate movement of the linear slider. As motion in all directions other than the slider was mechanically
constrained, the initial estimates of the point clouds transformations prior to the ICP optimization were very
accurate. With such initial estimates, the point to plane ICP optimally computed transformation between
successive point clouds as well as the final point cloud registration described by Eqn. 1 and 2. Here, the
ICP registration error is defined as the absolute difference between the ICP optimized translation against
the actual distance travelled by the camera while imaging at different positions (measured with the encoder
of the motor drive of the linear slide). The mean absolute error between these measurements averaged to
±2mm. With uncertainties from individual stereo measurements and multiple ICP registration steps, the
final accumulated registration error was estimated to be within ±6.8 mm. As explained in Section 4.1.2, the
average diameter of the canes was 8 mm and the widest blade opening was 38 mm (Fig. 4). Therefore, the
accuracy achievable from the 3d reconstruction pipeline was well within the tolerance of the end-effector.
All accuracy analysis were done in a mock-up vine in a laboratory setup. This was necessary mainly to rule
out effects from wind that could alter both ground truth and the stereo measurements. All laboratory tests
used the same camera system as in the field prototype and a real vine collected from the test site.

5.2.3 Reconstruction completeness

In addition to measuring reconstruction accuracy, the completeness of the 3D model also plays a crucial
role in the overall success of autonomous pruning. For instance, largely fragmented cane structures and
missing buds in the model could highly impact the cut point detection algorithm (see Section 4.2.7), which
ultimately affects the pruning efficiency. In the literature, the quality of point clouds are usually assessed
using objective and subjective metrics (Karantanellis et al., 2020). Objective metrics usually compare point
clouds to a reference or well-defined objects in the scene (Karantanellis et al., 2020; Moon et al., 2019; Zhang
et al., 2018). Whereas, subjective evaluation are based on visual inspection and usually involve completeness,
density etc. as factors in point cloud assessment (Karantanellis et al., 2020). However, because of lack of
consistent structures in vines, reference or ground truth point clouds are difficult to generate and are not
available for comprehensive comparison. To assess quality of point cloud from our dual stereo camera system,
we present the following objective metrics.

• Number of points: Total number of points in the registered point cloud.

• Number of neighbors: Average number of points within the search radius of a sphere with r = 0.05 m.

• Surface roughness: Average distance between each point in the point cloud to the best fitting plane using
neighbors in the search radius of a sphere with r = 0.05 m.

• Surface Density: Average number of points per square meter.

• Volume Density: Average number of points per cubic meter.

Furthermore, we compare the above objective metrics between three models: one reconstructed only using
the bottom camera (BC), the other reconstructed only using the top camera (TC), and finally with the
registered point cloud using both the top and bottom cameras (TBC) on 5 vines. The results are shown in
Table 4. As expected, the results show that TBC model has more points, neighbors and higher surface as
well as higher volume density when compared to BC and TC models. However, the surface roughness of the
TBC mostly remained average between the TC and BC point clouds.



Table 4: Objective quality metrics for vine point clouds.

No. of Points No. of Neighbours Roughness (mm) Density (#/m2) Volume (#/m3)
Vine

TC BC TBC TC BC TBC TC BC TBC TC BC TBC TC BC TBC
1 32,134 23,197 43,479 381 359 600 6.22 5.50 5.89 48,524 45,735 76,415 727,863 685,956 1,146,260
2 32,522 32,996 51,553 461 441 743 6.85 6.64 6.36 58,757 56,147 94,568 881,357 842,255 1,418,513
3 35,969 37,344 57,036 404 382 654 6.51 6.34 6.42 51,488 48,609 83,290 772,314 729,102 1,249,345
4 29,256 25,642 42,764 418 396 669 6.35 5.64 5.85 53,239 50,481 85,221 798,623 757,188 1,278,310
5 27,912 23,457 39,925 377 387 630 5.95 5.70 5.72 47,958 49,245 80,185 719,353 738,648 1,202,803

Table 5: Statistics on ground truth bud counts and buds present on different point cloud models.

Vine Ground Truth TBC TC BC Correlation
1 86 88 64 66 Ground Truth vs. TBC
2 54 59 47 50 R2 = 0.98
3 77 83 60 63 Ground Truth vs. TC
4 81 80 56 56 R2 = 0.96
5 121 115 79 76 Ground Truth vs. BC

Total 419 425 306 311 R2 = 0.88
(100-MAPE)% 94.89 74.76 76.62

For subjective evaluation, here we define two quality metrics to quantify the subjective quality of the recon-
structed vine structures. The first metric, connected components, attempts to quantify the completeness of
the vine structure as a function of the octree graphs connectivity described in Section 4.2.7. This approach
essentially exploits the connected components properties of graphical structures. For a 3D model without
any significant gaps in the model, we would anticipate a single or very few connected components, whereas
fragmented/incomplete reconstruction would result in large numbers of connected components. The second
metric, bud counts, involves the number of buds in the reconstructed model. Similar to the objective metrics
in the above paragraph, we compare the results from the TC, BC, and the TBC model on 5 test vines in
the subjective evaluation as well. The results show that the number of incompletely formed canes were
significantly reduced in the TBC model when compared to the TC and the BC models (6 vs. 17 vs. 19
respectively). Similarly, the number of buds that were essential features for cane segmentation were also
significantly present in the TBC model than in the TC and BC model (425 vs. 306 vs. 311 respectively). In
total, the TBC model had Mean Absolute Percentage Error (MAPE) of 5.11% in buds count whereas the
TP and BC has significant higher MAPE in bud counts of 25.23% & 23.37% respectively when compared
to manually counted ground truth. Likewise, in the R2 correlation between the manual counts of the buds
vs. the final registered bud counts was highest in the TBC to TC and BC. Table 5 summarizes all these
details on 5 vines for the TBC, BC, and TC models. The high level of completeness in the reconstruction of
vines is attributed to the additional (elevated and slanted) views of the canopy provided by the top camera.
Evidently, while point clouds from the bottom multiple views provided the majority of the vine structure, the
top camera data filled gaps in the most occluded regions. Some of the fragments/disconnected canes in the
TBC model were mainly stray canes from the adjacent vines, as no two consecutive vines had a well-defined
separation.

5.2.4 Region growing

The validation of the region growing-based point cloud segmentation algorithm has two parts; i) accuracy
of the SVM classifier, and ii) the resulting overall accuracy of cane segmentation. For the first part, we
measured the performance of the SVM as a binary classifier to classify SVD decomposed values into cane
regions. To evaluate the first part, we manually selected 536 sample point from 5 different vines (273 canes
vs, 263 non-cane regions). Out of the 536 random test samples, the SVM correctly classified cane/non cane
regions with a F1 score of 0.97.

For the second part, we conducted point-to-point comparison between the hand labeled cane point cloud
to the region growing segmented point cloud. As hand labeling of complex vine structures are resource



intensive, we are currently limiting the segmentation evaluation to 5 vines. The analysis shows that the
cane segmentation pipeline achieved an overall F1 score of 0.91. The confusion matrix for the overall cane
segmentation and SVM-based individual region classification are shown in Fig. 17.

Figure 17: Confusion matrix for SVM-based cane/ non-cane classification of SVD values (left). Normalized
confusion matrix for hand-labeled cane regions to region growing algorithm predictions (right). In both
confusion matrices, the label ”Others” refers to sample points not belonging to canes.

5.2.5 Cut point localization

To validate the localization accuracy of the cut points (in-between 4th and 5th bud), we kept track of all
the canes (in the 20 vines) with bud counts exceeding 5. In all canes with a significant number of buds, the
algorithm estimates of the cut positions were compared against the manual labels. Although, the midpoint
between nth and (n+1)th bud was used as the 3D location of the cut points, any location within the two
buds were taken as a valid solution since it was more important to correctly associate the bud sequencing.
This algorithm on average achieved accuracy of 94% across all manually selected pruning locations.

5.2.6 Workspace Quantification

A Monte Carlo experiment was carried out to estimate the volume of the robot’s workspace. The idea was
to sample points in the joint position space to estimate the overall reaching capability of the 7 DoF robot,
for one vine. These tests were performed in a simulated environment, using a point cloud model of the field
vines. In total, nearly 200,000 end-effector positions were collected as samples of the reachable positions in
the workspace. The volume enclosing all the positions reached by the end effector was estimated fitting a
convex hull model implemented in MATLAB. This experiment was repeated for two cases: with the 6 DoF
arm fixed to the center position of the linear slide and with the 7 DoF counterpart fully articulated allowing
the prismatic base to move (Fig. 18 left). As expected, the results showed that the 3D work volume of the
7-DoF arm (3.5m3) was more than 2 times higher compared to the lower 6-DoF design (1.6m3). Similarly,
because of the current architecture of the vines, this experiment also showed that if the mobile base is
close enough to the canopy, an average of 68% of the canes were within the reachable workspace of the
manipulator, while the remaining 32% had to be addressed from the other side. A graphical representation
of the number of points in the workspace and the number of reachable locations in the vine structure from
the center of the vine is shown in Fig. 18. In this figure (Fig. 18 left), the dashed lines represent the total
reachable points in the work space, whereas the solid lines are the reachable points in the vine structure.



Figure 18: Top view of the work volume of the 6 and 7 DoF arms (left) separated by the dashed line. The
red and black dots are reachable positions for the 6&7 DoF respectively. A graphical representation of the
reachable locations in the vine for both 6 and 7 DoF arm (right).

5.3 Pruning

To measure the overall effectiveness of the presented robotic pruner, we introduce several metrics to evaluate
its performance. First, Total Pruning Accuracy (TPA) quantifies the robot’s ability to prune successfully at
the right pruning locations. Equation 5 defines TPA as:

TPA =
Total valid cuts

Total pruning locations
(5)

Similarly, Total Pruning Cycle (TPC) is the average time required to prune each vine, as described in Eqn. 6.
This metric linearly combines computation cost of all sub-processes in the perception, planing, manipulation,
and navigation systems. The computation timing breakdown of all major sub-operations in TPC is shown
in Fig. 19.

TPC = Tperception + Tplanning + Texecution (6)

Figure 19: Total computation time breakdown for pruning a vine from a single side of the canopy.

Fig. 19 shows the TPC from a single side pruning and the significant sub-processes under perception,
planning, and execution stages. In total, it took 137 sec to prune a vine from one side. The current vine
training system allowed canes to be randomly distributed on both sides of the canopy and nearly 32% of
the canes were on the opposite side and outside the reachable workspace of the robot. For this reason, the



robot had to repeat all operation from both sides of the canopy (i.e., from point cloud model generation to
motion planning and execution), which increased the TPC to 213 sec/ vine.

The variability caused by the non-selective pre-pruning is shown in Fig. 20. After this operation, the
standard deviation of the bud distribution per cane was found to be ±2.08. Based on the statistics from
Section 5.1 (Orange data lines), only 95 out of 268 canes (35%) needed to be pruned. Under the assumption of
ideal perception and manipulation capabilities where all pruning locations were detected and pruned, leaving
exactly 4 buds per in canes with more than 4 buds, the best achievable deviation would be of 0.97 standard
deviation (Fig . 20 red data line). In reality, because of some discrepancies in the pruning point detection
and motion planning/ execution pipelines, not all canes were consistently pruned. Out of 95 prunable canes,
only 83 were successfully pruned, yielding a TPA of 87% (Fig. 20 green data line). However, even with 87%
TPA, the standard deviation decreased to ±1.03 which is a significant reduction in variance given that the
pre-pruning step over-pruned 45% of the prunable canes. In section 6 we further discuss on the source and
potential improvements of the current system.

The factor that ultimately determines the success criteria for a pruning robot is its ability to remove canes.
In other words, all the steps in the perception and motion planning leading up to the final execution of the
cutting action becomes significant only if the target cut-point gets successfully cut. Commonly used metrics
such as the TPA described above only quantify the ratio of success or failure in completing the pruning
tasks. To incorporate the effects of intermediate steps and to better describe the overall performance of the
pruning robot, we introduce a new metric called Total Pruning Efficiency (TPE). The TPE is a multiplicative
combination of several efficiency terms that at high level include perception (3D registration, cut-point
detection), motion planning, and execution efficiencies as shown in Eqn. 7. In this metric, all efficiencies
are converted accuracies or success rates normalized to a number between 0 and 1. For instance, the bud
detection efficiency is essentially the accuracy of detecting buds where ηbud detection = 0.95 represents 95 %
detection accuracy compared to ground truth values (see Table 5). Similarly, ηplanning = 0.95 represents 95%
success rate in the motion planner’s convergence to a solution. As shown in Table 6, the TPE is especially
valuable in narrowing down system bottlenecks and as well as to justify different design choices.

TPE = ηregistration ∗ ηlocalization ∗ ηexecution (7)

ηregistration = ηbud detection ∗ η3D reconstruction

ηlocalization = η cane segmentation ∗ ηcut−point identification

ηexecution = ηplanning ∗ ηexecute

Figure 20: A variability plot that shows the distribution of all buds per cane for every field vines after pre-
pruning, under the assumption of ideal robotic pruning (red data line), and achieved results with the robotic
pruner (green data line). The error plot on the right side shows the standard deviation of bud distribution
about the mean bud counts on all three cases.



Table 6 summarizes TPE for various possible combinations of hardware, software, and pruning strategies.
The first row with the cell labeled “all inclusive”, incorporates all system components described in this paper.
Here, the TPE accounted to 0.64 even with higher accuracies in the registration and localization pipeline
but with relative low manipulator execution efficiency. In single side pruning, we only considered pruning
a vine from one side. Although the ηregistration and ηlocalization efficiencies remained similar, pruning only
from one side mainly affected ηexecute efficiency as nearly 32% of pruning location were out of reach. This
decreased the TPE significant to 0.3. Considering the full point cloud model of vines as obstacle mainly
affected the motion planning and execution efficiencies. With more occupied space in the robot’s workspace,
the sampling-based planner (RRT-connect) took significant amount of time as well as attempts to converge
to a solution. Significant delays were also observed in the motion execution, and most joint configurations
looked unnatural and complex. The TPE in this case was 0.47 with TPC of 177. With just one stereo
pair, we observed the most drastic effect to TPE. As it affected the perception part at the beginning of
the pruning cycle, the error propagated to localization and motion execution stages. Here, the TPE was
only 0.17. Finally, nearest neighbor-based TSP optimization exhaustively minimized the total point-to-point
distance travelled while visiting all pruning locations. Without TSP, the longest possible cut-routes increased
the TPC by nearly 20% while the rest of the efficiencies remained similar. The single side, full vine model
as obstacle, model from single stereo, and the pruning point sequencing without TSP were analyzed in a
simulator, virtually pruned from single side, and based on the data of the same vines collected in this study.

Table 6: Combination of different design choices that affect TPE.

Combination ηregistration ηlocalization ηexecution TPE TPC
ηbud detection 0.95 ηcane segmentation 0.87 ηplanning 0.95

All inclusive
η3D reconstruction 0.96 ηcut−point identification 0.97 ηexecute 0.84

0.61 245

ηbud detection 0.95 ηcane segmentation 0.87 ηplanning 0.67
Single side pruning

η3D reconstruction 0.96 ηcut−point identification 0.97 ηexecute 0.59
0.3 137

ηbud detection 0.95 ηcane segmentation 0.87 ηplanning 0.84
Full vine obstacle

η3D reconstruction 0.96 ηcut−point identification 0.97 ηexecute 0.73
0.47 177

ηbud detection 0.75 ηcane segmentation 0.64 ηplanning 0.92
Single stereo

η3D reconstruction 0.68 ηcut−point identification 0.68 ηexecute 0.84
0.17 105

ηbud detection 0.95 ηcane segmentation 0.87 ηplanning 0.92
No-TSP

η3D reconstruction 0.96 ηcut−point identification 0.97 ηexecute 0.84
0.59 164

5.4 Navigation

Figure 21: Cross-track and heading errors of the path followed by the vehicle when compared with the desired
trajectory generated by the planner.

As mentioned in Section 4.5, the robot drove to each pruning location, remain stopped while pruning and
start moving again to the next vine location. Given that the width of the vineyard row was only 1.8 m wide
and the mobile robot with the linear slider and the arm was approximately 1.2 m, maintaining a consistent



distance from the canopy and remaining parallel to the rows were critical requirements. The autonomous
navigation system was first tested on the accuracy of stopping at each pruning location. We used 20 vines
whose positions were marked prior to the trial using the RTK-GPS. During the test, the robot stopped
as expected in all locations and the average position of the robot while stopped was used to calculate its
distance to the desired vine location. The longitudinal root mean squared error obtained in this case was
0.28 m, which was acceptable given the pruning task was accomplished successfully in all 20 vines. Laterally,
we observed average cross-track errors of 0.07 m for in-row navigation and maximum deviation errors of
0.29 m, which mainly occurred while turning. The average heading angle error was 10.76 degrees and when
stopped, the robot remained parallel to the canopy. This positioning facilitated the 3D reconstruction and
motion planning algorithms for the pruning task, as all the pruning points were horizontally equidistant to
the cameras for imaging and the arm for the actuation.

We also evaluated the capability of the autonomous navigation system in the larger section of the vineyard
with multiple rows. To this aim, the robot was commanded to drive skipping one row along the yellow route
depicted in Fig. 11. The total travel distance driven was approximately 1571.13 m at an average speed of
0.58 m/s and the robot drove autonomously for approximately 45 minutes with no intervention. In both
trails, similar heading angle and cross tracking errors as in the pruning section were observed.

6 Discussion

In general, robots that interact with their environment pose very challenging problems to solve. In particular
for robotic pruning, biologically driven surrounding and indeterminant growth habits of vines add more
challenges in perceiving and interacting with the environment. It took us three years of effort with two
hardware revisions and numerous software modifications to achieve the results reported in this paper. This
section summarizes the key lessons learned, capabilities and limitations, future enhancements to our existing
system and some remarks to guide further research.

The first requirement in the perceptual capabilities of the pruning robot is accurate and complete 3D models
of vines. With multiple views (fourteen different viewpoints), the scan-match based 3D reconstruction
approach was able to generate precise models of the vines. In the generated 3D modes, canes which are
thin structures with diameters as small as 4 mm were clearly visible with few fragments in its structure.
The top slanted camera was a necessary addition, which greatly helped to minimize missing information in
the occluded regions by adding point clouds from views that were not seen from the front facing camera.
Thus, with adequate overlapping from multiple viewpoints, the complete 3D reconstruction of the vines
was possible from just one side of the canopy. However, this approach not only required frequent stereo
calibration but was also required manual tuning of several parameters to maintain a relatively consistent
size of the registered point clouds for real-time processing. However, modern commercial vineyards typically
have consistency in row width and vine spacing, and are equipped with mechanical means to simplify vine
complexity at scale. These factors made it possible to tightly control field experiments such as maintaining
constant distance between the robot and vines to achieve consistent results even with heuristically chosen
parameters.

In this study, complex vines structures were simplified by manually pre-pruning with a machine. This step
not only facilitated the perception pipeline, but the overall pruning operation. Despite the heuristic-based
choices of multiple parameters, the 3D reconstruction method seems to be applicable to uncut, highly vigorous
and cluttered vines (see Fig. 22). However, it can be argued that such vine could potentially have higher
occlusion that could lead to incomplete or missing canes and affect TPE. This limitation could be handled
with an in-hand camera system to explore regions of high occlusion and iteratively add missing links. In
recent history, deep learning-based point cloud registration (Elbaz et al., 2017) have shown promising results
to register noisy point cloud data without accurate initial alignments and could potentially eliminate frequent
calibration and initialization requirements. However, such a supervised approach could potentially require
larger training samples to achieve good results.



Figure 22: The 3D reconstruction (left) of a complex vine (right) with multi-cameras and scan match-based
approach described under Sec.4.2.2.

Large datasets to training machine learning models for deep learning-based computer vision is a bottleneck
in specialty crop industry and agriculture, in general. The combination of vast amounts of cultivars and
variations within those varieties makes collection and maintenance of labeled datasets for supervised machine
learning extremely challenging. The consistency in image exposure and color achieved with the active light
camera proved to greatly reduce variance caused in images by ambient lighting. In consequence, the training
sample size was reduced by multiple folds to achieve similar bud detection results when compared to models
trained with larger datasets (see (Silwal et al., 2021) for more details). The availability of public datasets
with 3D plant models with proximal sensors are even rarer in agriculture. As hand-labeling of large 3D
dataset to segment canes from rest of the vines was very resource intensive, we refrained from the state-of-
the-art deep networks and opted to classical machine learning with SVM. With the combination of singular
value decomposition and SVM as a binary classifier, the region growing algorithm was robust at segmenting
dormant canes. The training of the SVM model required relatively small but hand-engineered features, and
the generation of data for training and the training process itself could be done in a few minutes. Throughout
our three years of development and testing, we have only required to train the model once, and it seemed
to work equally well on simple as well as complex vine structures. The region growing algorithm essentially
exploits the nature of vines. It utilizes buds that are naturally present in vines as seeding points for growing
regions in the segmentation process. As all vine varieties have canes with buds, with minor tweaks we
expect this algorithm to be adaptable to most vine architectures with relatively small amount of data for
retraining. This could be significantly useful as vines are high-value crops and vine industry plays a major
role in specialty crops industry.

When pruning a vine, professional workers only keep canes that are healthy and within a certain diameter.
These quality attributes of canes are currently not included in our work. Another key limitation in our
current computer vision pipeline is the potential effects from wind. For the latter, we observed average wind
speed up to 12 miles/hour (mph) (5.3 m/s) and some gusts up to 25 mph (11 m/s). As vines in commercial
vineyards are very rigidly supported by metal posts (vertically) and trellis wire(s) horizontally, small winds
gusts (up to 12 mph or 5.3 m/s) seemed to have minimum effect in the 3D reconstruction of pre-pruned
vines. However, higher wind speeds could arguably cause significant issues in the registration process for
any scan match-based approach. Especially in vines with longer canes (not pre-pruned) and regions further
away from the rigid trunk and cordon supports. To minimize such affect, we selected spur pruning to retain
fewer number of buds per cane where the cut-points were closer to the supportive structures and minimally
affected by wind. For other pruning rules such as cane pruning where longer sections of cane need to be
retained, affects from wind could be a significant problem. For the former, we currently consider all canes as
healthy and viable. Although measuring cane diameter is relatively straight forward from the stereo images,
assessing cane quality/ health would require additional sensing ability. More advanced camera systems
such as hyper-spectral or thermal imaging technologies in conjunction with end-to-end deep networks could
potentially provide robust solutions.



The addition of a prismatic base to the kinematic chain of the 6-DoF robot arm seems to have added
several advantages. The motion planning and execution part with initial and final approach to the pruning
locations were attempts to generate natural-looking motion of the arm as well as to cautiously interact
with the vine structure. The initial planner was RRT-connect that positioned the end-effector 15 cm from
the final destination. It converged to a solution in almost all cases (99%). However, the shortcomings
in the manipulation end in this work are mainly attributed to the Cartesian path planner where 100% of
the interpolated trajectory were sometimes not achievable. Furthermore, in some cases, the ROS’s inbuilt
Cartesian planner generated jerky motions that in some cases caused the tip/side of the end-effector to push
the cane rather than securing it in-between the cutting blades.

The current state-of-the-art and the interest of the research community to control robot arm in complex
environment is reinforcement learning (RL). Similar to Deep learning in computer vision, Deep Reinforce-
ment Learning policies tend to provide end-to-end solutions to manipulation tasks and could likely reduce
dependency on heuristically set parameters and behaviors for pruning. Furthermore, with Deep RL more
sophisticated capabilities that are not possible with existing sampling-based methods such as learning to
prune from expert demonstrations could generalize pruning across different vine varieties and architectures.
Our recent efforts in using RL policies to manipulate robot arm for pruning can be found in (Yandun et al.,
2021).

As described in Section 5.2.6, to prune the remaining 32% of vines, the robot had to repeat all processes
from the other side. Although, a robot arm with longer reach could solve this issue, vine architectures with
uniform cane distribution on a single side and well-defined vine to vine separation would be advantageous.
Furthermore, viticultural practices are critical for reliable robotic pruning operations. Cane and spur pruning
are the main pruning methods adopted by the industry. However, to maintain balance between yield, quality,
and vegetative growth, accurate estimation of vine size is necessary. The estimation of vine size which is
often done by pruning weight estimation (Milkovich, 2021) determines the number of buds to retain per
vine. This method of pruning is formally referred to as balance pruning, as the amount to prune is based on
the capacity of the individual vine (Milkovich, 2021). None of the existing robotic prototypes, including this
work, have implemented such a strategy. However, our approach of using bud detection and pruning strategy
to retaining a fixed number of buds per cane sets us on the right path to achieving balanced pruning.

Finally, we selected MPC controller for navigation in this work mainly for the four following reasons: i) it has
produced good results in autonomous navigation for a variety of vehicles and driving conditions (Sakhdari
and Azad, 2018; Amer et al., 2017), ii) its formulation naturally allows to constraint the optimization
problem to obtain desired practical results, iii) it produced a smoother navigation in terms of overshooting
and cross-track error when compared with approaches like pure pursuit in prior tests, and iv) as it is a
model-driven strategy we can increase its complexity including the dynamics of the vehicle or other variables
for future research. It is worth noting that the second point was particularly useful for this application, as we
limited the control effort to obtain maneuvers that reduced the risk of damaging the surrounding vegetation.
Although, just GPS way point following seemed robust for this application, inclusion of local sensor for
navigation as well as safety critical features such as obstacle detection & avoidance, and compliance to farm
vehicle and field workers are currently ongoing developments.

7 Conclusions

In this work we presented a combination of tools, techniques, and system development details of an au-
tonomous vine pruning robot as a follow-up pruner. Highly vigorous Concord vines in a commercial vine-
yard were mechanically pre-pruned to ease robotic operations. The foci of attention here were not only to
develop a system mostly utilizing off-the-shelf hardware components for a proof-of-concept prototype, but
mostly to understand what is takes to robotically prune grape vines. The key technical challenges that we
addressed in this work were robust imaging capability in the outdoors and data efficient machine learning
models for processing vine structures. The illumination invariant camera system proved to be a valuable
component as consistent image data were acquired at any lighting condition. This also led to fewer training



sample for detecting buds in images and eased 3D reconstruction. Results from the field study show that
even complex vines structures could be accurately modeled from single side imaging. The integrated system
robustly identified pruning location and pruned 87% of the canes successfully, with an average cycle time
of 213 sec /vine from two sides and 137 sec/vine from one side. Improved pruning efficiency will require
robustness in manipulation and advanced sensing capabilities to assess cane health and vine size for balance
pruning. The mechanical design with redundant manipulator was enough to address a single vine and could
have multiple uses throughout the growing season, such as selective shoot thinning and harvesting.
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Appendix: A brief economic study to compare cost between different pruning technologies

This section summarizes a brief economic study that highlights the cost associated with manual pruning
operation and the benefits of robotic pruning both as a hand follow-up operation and fully independent and
autonomous system. Table 7 shows typical vineyard dimensions for three varieties of vine including Riesling,
Concord, and Vignoles that are commonly grown across the United States. The variables evaluated include
row width, vine separation, cordon height, number of trellis wire and average number of vines per acre.
These measurements were taken at the same commercial vineyard site used for testing the robotic pruner
described in this paper. To quantify human pruning speed, an experienced professional pruner was asked to
prune 30 sample of each vine variety at a regular pace. On average, it took 150 seconds to prune a vine with
an average of 14 canes to cut.

Table 7: Various vine architecture measurements in the test vineyards.

Vine type
Measurement unit: feet (meter)

Riesling Vignoles Concord
Average

Row width (W) 9 (2.74) 9 (2.74) 9 (2.74) 9 (2.74)
Vine separation (L) 6 (1.83) 4 (1.22) 9 (2.74) 6 (1.83)
Cordon height (H) 2 (0.61) 6 (1.83) 6 (1.83) 6 (1.83)

No. of trellis 4 1 1 -
No of vines per Acre 807 1210 537 850

Average cane per vine 11 13 18 14
Average manual pruning speed (sec/vine) 142.8 95.4 214.2 150

The numeric values (see Table 8 & 9)used in this brief study are mostly inspired from (Striegler, 2021). Table
8 and 9 have more details on additional numeric values and their function in the calculation and comparison
of four types of pruning technology viz. hand pruning, mechanically assisted hand pruning, mechanically
assisted robotic pruning, and fully autonomous pruning. Additionally, we also assumed 25% increase on any
outdated costs and wages used by (Striegler, 2021). We also assume minimum wages of $15 per hour (based
on NY minimum wage (State, 2021))) and cost of fuel is taken as national average of $2.38 for 2021 from
(Fleet, 2021). For robotic pruning, we assume the robot runs on fuel for 18 hours long operation to match
the labor counterparts of three pruning crew working 6 hours each. The calculations are detailed in Table
8 and 9. Our calculations show that the cost of hand pruning per acre was $672, which was the highest
cost amongst all technologies, as expected. In mechanically assisted pruning, a dedicated hardware system
pre-prunes vines that ease the work environment for pruners at the cost of the mechanical system. Here,
the cost of mechanically assisted and hand follow-up operation together summed up to$459.25 per acre. In
mechanically assisted robotic pruning, robots autonomously perform the follow-up pruning operation after
vines are mechanically pre-pruned. Although at a glance it seems to increase initial investments, it drastically
decreased per acre cost of pruning to $161.9. With a fully autonomous system capable of pruning vines end-
to-end without any assistance, the cost of pruning goes down to just $80.64 per acre. As evident from Table
8 and 9, and depicted in Fig. 23, assisted robotic technology or fully independent robotic solutions could
decrease cost of pruning by nearly 4 to 8 times respectively. Thus, robotic systems for pruning has clear
advantage to existing technology/ practice and needs in today’s economy and in the long-term could prove
to be profitable.



Table 8: Cost associated with hand and mechanically assisted pruning.

Mechanically assisted pruning
Hand pruning

Mechanical pre-pruning Hand follow-up
Labor (Hours/ Acre) 32 hrs.

Minimum wage (per hour) $15
Benefit 40%

Direct cost (per hour) $21

0.65 equipment hrs. + 2.4 labor hour 3 laborers for total of 18 hrs.

Total Cost (per acre) $672 $81.25 $378

Combined Cost (per acre) $459.25

Initial investment* - $30,000 -

Table 9: Cost associated with robotic pruning.

Fully Autonomous Pruning Mechanical Pre-pruning
Labor (Hours/ Acre) -

Minimum wage (per hr.) -
Benefit -

Run time 18 hrs.
Robot fuel (9 gals @ 0.5 gals/ hr.) $21.42

Generator fuel (9 gals @ 0.5 gals/ hr.) $21.42
Lubrication cost ($2.1/ hr.) $37.80

0.65 equipment hrs. + 2.4 labor hour

Total Cost (per acre) $80.64 $81.25
Combined Cost (per acre) $161.90

Initial investment* $115,000 $30,000

*The robotic pruning prototype is estimated to cost $115,000 US. The $30,000 US cost is the estimated
value of the OXBO pruning head attachable to farm vehicles.

Figure 23: Cost breakdown for different pruning technologies.


